一本道

人才培养

本科生教育 研究生教育 学术讲座 研究生招生

2025年6月30日学术报告

编辑:赵顺毅    时间:2025-06-17    点击数:    来源:朱启兵    文、图:朱启兵

报告人 Ruili Wang 讲座题目 Knowledge Enhancement and Disentanglement Learning for Video Captioning

报告 1:Knowledge Enhancement and Disentanglement Learning for Video Captioning


报告 2:中国国家留学基金委博士奖学金的申请 报告人:Ruili Wang 教授,新西兰 Massey University,新西兰 工程院院士 


报告时间:2025-6-30(周一),14:30-16:00


报告地点:C317



报告 1 摘要:Video captioning, bridging computer vision and natural language, is crucial for various knowledge-based systems in the age of video streaming. Recent video captioning approaches have shown promise by integrating additional text-related knowledge to enhance understanding of video content and generate more informative captions. However, methods relying heavily on knowledge graphs face several limitations, including (i) a restricted capacity to reason complex relations among object words due to static logic rules, (ii) a lack of context awareness for spatio -temporal relation analysis in videos, and (iii) the complexity of manually constructing a knowledge graph. These limitations lead to insufficient semantic information and obstruct effective alignment between visual and textual modalities. To tackle these issues, we propose a novel knowledge enhancement and disentanglement learning method for video captioning. Our approach introduces a comprehensive and adaptable knowledge source to enhance text-related knowledge, thus directly improving caption generation. Specifically, we leverage a large language model to infer enriched semantic relations between object words and speech transcripts within video frames. By integrating visual, auditory, and textual information into universal tokens with task-specific prompts, our approach enhances semantic understanding and captures more diverse relations. Furthermore, we propose a novel modality-shared disentanglement learning strategy to better align modalities, enabling a more precise link of visual cues to their corresponding textual descriptions. Specifically, we disentangle two modalities into shared and specific features, leveraging shared features to ensure alignment while mitigating uncorrelated information. Extensive experiments demonstrate that our proposed method outperforms existing methods in both quantitative and qualitative results.


报告 2 摘要:Ruili Wang 教授将详细阐述申请流程、所需材料以及注意事项;并分享 一些提高申请成功率的技巧和策略。


报告人简介:Ruili Wang 教授,博士生导师,新西兰工程院院士,毕业于华中科技大 (学士)、东北大学(硕士)、都柏林城市大学(博士),担任新西兰梅西大学数学与计算 科学一本道科研副院长。目前从事的研究包括人工智能、机器学习、机器视觉、语音处 理和自然语言处理等多个方面。曾获得多个新西兰国家级重大和重点项目的资助。担 任多个 SCI 期刊的编委,包括 IEEE Transactions on Multimedia (TMM), IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI), ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), Knowledge and Information Systems (Springer), Applied Soft Computing (Elsevier), Neurocomputing (Elsevier)


关闭

copyright© 一本道观看入口

校内备案号:JW备170182

地址:江苏省无锡市蠡湖大道1800号

邮编:214122

联系电话:0510-85910633

服务邮箱:yibendao8.com

  • 一本道 微信订阅号

  • 一本道 订阅号

  • e江南订阅号